
Algorithms for Fast Large Scale Data Mining 
Using Logistic Regression 

 
Omid Rouhani-Kalleh 

One Microsoft Way 
Redmond, WA 98052 USA 
Phone: +1 425-704-7383 

  
 
Abstract-This paper proposes two new efficient algorithms 
to train logistic regression classifiers using very large data 
sets. Our algorithms will lower the upper bound time 
complexity that the existing algorithm in the literature has 
and our experiments confirm that our proposed 
algorithms significantly improve the execution time. For 
our data sets, which come from Microsoft’s web logs, the 
execution time was reduced up to 353 times as compared 
to the algorithm often referenced in the literature. The 
improvement will be even greater for larger data sets. 
* 

I. INTRODUCTION 

A. Motivation 
The motivation for our research lies in the large number of 

recent publications showing great success in using logistic 
regression as a pure data mining tool to do classification ([20], 
[13], [18], [2] and [9]). Techniques have previously been 
presented for how to scale up logistic regression to deal with 
large sparse data sets ([16]). A popular approach to do this is 
to use the iteratively reweighted least squares method (IRLS 
from [5]) together with a conjugate gradient equation solver 
([1]) to build large scale binary logistic regression classifiers 
([9]). This method is appropriate for data sets with a very large 
number of data points and attributes when the attributes are 
binary and the data is sparse ([10]).  

B. Our contribution 
We will propose two efficient algorithms to implement the 

existing logistic regression algorithm for classification. Our 
first proposal, named LR-Sparse, will avoid the creation of 
matrix A and reduce the memory usage and improve the run 
time. The second proposal, named LR-Set, takes advantage of 
that matrix A is repeatedly recalculated using this equation 

IXWXA T ∗+∗∗= λ . 
LR-Set will use the fact that X and λ are constant 

throughout the calculations and only W changes. Knowing this 
allows us to recalculate A much faster than simply performing 
the multiplications in the equation. This results in a much 
lower training time when we have a large number of classes. 

Per design these two algorithms will generate identical 
classifiers as the existing algorithm. 
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II. LOGISTIC REGRESSION 

A. Multi-class classification 
Although we are dealing with large scale multi-class 

prediction, the reader should note that one of the assumptions 
made when using logistic regression is that the data comes 
from a binomial distribution and hence it is a binary classifier. 
The most common approach to extend a binary classifier such 
as logistic regression to serve as a multi-class classifier for N 
classes is to build N separate binary classifiers, each being 
able to give a score for how likely it is that a data point comes 
from the corresponding class. To do prediction, we let all N 
classifiers score the data point, and the highest score 
corresponds to the class in which we have the highest belief. 
Since we need to train one classifier per class in our data set, 
the time complexity of the training phase and the memory 
requirement for storing the classifier is linearly proportional to 
the number of classes in the data set.  

B. Notations 
Since we will use many mathematical expressions in this 

paper we find it necessary to define the notation we intend to 
use in order to avoid confusion. Hereafter, we will strictly 
enforce the following notation: 

Element i in a vector v is denoted vi. Row j in matrix X is 
denoted X[j]. Column i in matrix X is denoted X(i). Element 
(i,j) in matrix X is denoted Xi,j. Vectors might have 
superscripts, so v(i) and v(j) are two different vectors. The k:th 
element in v(i) is vk

(i). The dot product between vector v and 
vector u is denoted <v,u> and is defined as 

>< vu , ∑ ∗=
i

ii vu . 

Matrix X is our input data set and each row in this matrix 
corresponds to one data point. Yi is the class that data point i 
corresponds to. We have c different classes, so 

{ }cYi ,...,1∈ . 
Since we will have to build c different classifiers, we define:  

when mYi =  , { }cm ,...,1∈  
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y(m) is the binary vector that will be used to build the m:th 
classifier, and each 1 corresponds to a positive data point and 
each 0 corresponds to a negative data point. 



Matrix X is a binary matrix where each attribute is either 1 
or 0. We will deal with very large data sets and X will be 
sparse. 

C. Iteratively Reweighted Least-Square method 
One of the most popular algorithms to build logistic 

regression (LR) classifiers is the Iteratively Reweighted Least-
Squares (IRLS) method. It’s a robust ([5]) and fast ([10]) 
method to build LR classifiers. 

The IRLS algorithm is shown in Fig. 1. The derivation of 
this algorithm is beyond the scope of this paper. The curious 
reader is encouraged to read [18], [8] or [14] for a complete 
theoretical background to the equations. 

In a multi-class scenario where our data points can belong to 
three or more classes (c > 2), we will execute the IRLS 
algorithm once for each class.  

Although the algorithm might look straightforward to 
implement, one can implement it in several different ways. In 
this paper we will first look at the time complexity to solve the 
equations in Fig. 1 and Fig. 2 with a straight forward 
approach. We will then show that our algorithms, LR-Sparse 
and LR-Set, will use certain properties of the problem to solve 
these equations using a different approach with significantly 
lower time complexity. 

It is important to understand that our proposed algorithms 
will solve the exact same mathematical problem, so the final 
classifiers will be identical, but due to the differences in the 
three algorithms we will end up with both different theoretical 
time complexities and different real time execution time when 
performing our experiments using real world data sets. 

The two most computationally expensive lines in the IRLS 
algorithm are (1.d) and (1.f). Our algorithms will take on 

different approaches to solve these two equations. 
In all three cases we will solve (1.f) using the Conjugate 

Gradient (CG) method ([19]), which is a method from the field 
of numerical mathematics which has been studied for many 
years and has proven to be a fast and robust solver of linear 
equation systems ([1]). The CG algorithm will find a solution 
to the equation system 

bxA =∗  
when A is a large sparse symmetric positive definite matrix 
(SPD). The algorithm is presented in Fig. 2. 

 

III. TIME COMPLEXITY ANALYSIS 

A. Notation 
As we introduce our algorithms and analyze the time 

complexity for them we will use the notation in Table I. 

Input: 
Symmetric Positive Definite matrix A, vector b, 
maximum number of iterations imax and a starting 
value x. 

Output: 
x such that A * x = b. 
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Fig. 2. The Conjugate Gradient method. 

 

Input: 
Matrix X, vector y = y(m) (corresponding to class m) 
and ridge regression scalar parameter λ. 

Output: 
Logistic Regression weights b = b (m) (corresponding to 
class m). 

 
0=β  

WHILE(termination criteria is not met) 

β*][1
1

iXi e
u −+

=  (1.a) 

)1(*, iiiiW µµ −=  (1.b) 

ii

ii
ii W

yXU
,

)(* µβ −+=  (1.c) 

IXWXA T *** λ+=  (1.d) 
UWXb T **=  (1.e) 

Solve β  from bA =β*  (1.f) 
END 
 

Fig. 1. The Iteratively Reweighted Least Squares 
(IRLS) method. 



 
TABLE I 

TIME COMPLEXITY NOTATION 
Variable Denotes 

a Number of attributes (columns in X) 
d Number of data points (rows in X) 
s Number of nonzero elements in matrix X divided with total 

number of elements in X 
c Number of classes 

imax Maximum number of iterations for the CG method 
k Average number of nonzero elements per row in X

(k = s * a) 
 
Note that k is a short form for s*a. This notation has been 

introduced to avoid the usage of the more abstract term s in 
our final time complexity equations. In most applications 
one can easily put an upper bound to k by fixing how many 
attributes for each data point can be set to ones. 

Our data comes from our search engine. Like most search 
boxes we have an upper limit to how many words one can 
type in the search box. This has indirectly served as an 
upper bound to k for us. 

B. Time complexity for the Conjugate Gradient 
algorithm 

It’s not entirely straightforward to find the time complexity 
for the CG algorithm. Ref. [19] showed how the time 
complexity of the algorithm is 

( )KmO ∗ , 
where K is the condition number for matrix A defined as 

min

max

λ
λ=K  

and m is the number of nonzero elements in matrix A. λmax and 
λmin are the largest and smallest eigenvalues of A in absolute 
values. 

In practice, however, one will put a limit on how many 
iterations the algorithm will do before termination in order to 
obtain an approximate solution. We call this limit imax and will 
then have time complexity 

( )maximO ∗  

for the entire algorithm. 
Now let’s rewrite this complexity with the notation 

introduced earlier. The A matrix will be of size a2. The 
number of nonzero elements in the A matrix is strictly 
bounded by the size of A and hence 

( )max
2 iaO ∗  

serves as an upper bound for our time complexity analysis. 
The stringent reader might wonder if it is possible to express 

the estimated number of nonzero elements in A as an 
expression smaller than a2 using the knowledge that X is 
sparse. 

It is possible to show that the estimated number of nonzero 
elements in A is 
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if the nonzero elements are evenly distributed among the rows 
of the X matrix. Although this expression constantly is less 
than a2, for large d the expression quickly approaches a2. 
 

IV. ALGORITHMS 

A. Base algorithm 
The first algorithm we will look at is the direct 

implementation of the IRLS and CG algorithms as they are 
given in the literature ([9], [18] and the algorithms in this 
paper). The CG algorithm, for example, will have time 
complexity 

( )max
2 iaO ∗  

as discussed previously and as referenced in other literature. 
Although most of the equations in the IRLS and the CG 

algorithms can efficiently be implemented using 
straightforward implementations, the time complexity for (1.d) 
is not straightforward. The first thing one need to observe is 
that W is a diagonal matrix ([8]). We will show that the time 
complexity to calculate 

XXA T ∗=  
is identical to calculating 

IXWXA T ∗+∗∗= λ . 
In general, for a diagonal matrix W with diagonal elements 

iii wW =,  
we can define matrix C such that 

jiiji BwC ,, ∗= . 
We now have that 

CABWA ∗=∗∗ . 
In order to calculate  

BWA ∗∗ , 
we only need to calculate 

CA ∗ . 
The dimension of matrix C is identical to matrix B, and if wi,i 
≠ 0, the matrices will also have identical sparseness factors 
and hence the time complexity to solve either equation is 
identical.  
Since λ is a scalar, we can implement the λ * I term as an  

)1(O  

operation and it will not change our total time complexity. 
So to summarize, from a time complexity perspective, solving 

IXWXA T ∗+∗∗= λ  
is identical to solving 

XXA T ∗= . 
To calculate 

XXA T ∗=  
we will use the fact that X is sparse and that A will be 
symmetric. 

That X is sparse with a sparse factor s allows us to calculate 
<X(i),X(j)> by only traveling through the nonzero elements in  
X(i) and X(j). If we fix i and analyze the complexity of 



calculating <X(i),X(j)> for all possible j, this will be in order of 
number of nonzero elements we have in X, which is 

)( dasO ∗∗ . 
Now we need to repeat this for all values of i. We have a 
different values of i and hence our total time complexity is 

)( 2 dasO ∗∗ , 
which can be rewritten as 

)( dakO ∗∗ . 
In practice, we use the fact that <X(i),X(j)> equals <X(j),X(i)> 

in order to halve our computations. The time complexity 
however remains the same. 

B. LR-Sparse: Do not explicitly calculate matrix A 
Our first proposal for a new algorithm will be using the fact 

that we do not have to calculate the A matrix at all at step 
(1.d). We only need the A matrix to multiply it with a vector v 
at (2.a) and (2.b).  

Fig. 3. shows how there are two different ways of 
calculating  

vAx ∗=  
when A is defined as 

IXWXA T ∗+∗∗= λ . 
Equation (3.ii) and (3.iv) in Fig. 3 are both  

( )dO  
operations, while (3.i) and (3.iii) will have to go through each 
element in X, and hence will require 

( )dasO ∗∗ . 
The total time complexity for this new operation is 

( )dasO ∗∗ . 
Substituting s and a with k we have 

( )dkO ∗ , 
which is equal to the number of nonzero elements in matrix X. 
The time complexity of solving (3.a) is in proportion to the 
number of nonzero elements we have in the A matrix, which is 
bounded by  

( )2aO . 
In practice, A is often sparse. However, as our input dataset 

X grows (d gets larger), the density of A will increase. 
Notice how we at this point only analyzed the time 

complexity for the multiplication 

vAx ∗=  
without accounting for the time it takes to calculate A. The 
time complexity to actually create A depends on what 
algorithm we use to calculate it. We have already done this 
analysis for the base algorithm. Our next proposal, LR-Set, 
will improve this time complexity.  

To summarize the LR-Sparse algorithm, its main advantage 
is that we do not have to calculate and store the A matrix in 
main memory, which requires  

( )2aO  

space. However, instead we will have to store an additional 
vector requiring  

( )dO  

space. This may or may not be worse, depending on the 
properties of the input data set X. The time complexity of the 

vAx ∗=  
operation goes from being 

( )2aO  

to 
( )dkO ∗ , 

making the run time of the operation invariant to the number 
of attributes we have in our initial data set X. If this is 
desirable or not depends on the sparseness and the dimensions 
of X (the values for s, d and a).  

C. LR-Set: Explicitly calculate matrix A, using sets 
Our second proposal is similar to the base algorithm in that 

we again will calculate A, but now we will use the form of 
equation (1.d) to obtain an even better time complexity. (1.d) 
will be replaced so instead of actually calculating 

IXWXA T ∗+∗∗= λ  
we will introduce a new data structure that allows us to 
compute A in  

)( dkkO ∗∗  

time, instead of 
)( dakO ∗∗  

which the base algorithm offers. 
As before the λ * I does not affect the total time complexity, 

so we will focus on how to calculate 
XWXA T ∗∗= . 

We have just seen that the fastest way to calculate this 
equation for a sparse matrix X and diagonal matrix W is 

( )dakO ∗∗ . 
However, if we are going to perform the multiplication many 
times, and X is constant and only W changes, we can pre-
calculate how the final matrix A will look like and use this to 
quickly recalculate A for each new W. 

We previously discussed that when we calculate the dot 
product <X(i),X(j)> we will have to traverse all nonzero 
elements in X(i) and X(j). However, most of this traversal is 
unnecessary since most of the multiplications will be with 0. 

The formula to calculate A can be written as: 

Input: X, W, λ 
Output: x 
A = XT * W * X + λ * I 
x = A * v        (3.a) 
 
 
 
Memory complexity: 
a2 (storing A) 
Time complexity for (3.a): 
a2 

Input: X, W, λ 
Output: x 
q = X * v 
q = W * q 
q = XT * q 
x = q + λ * v 

(3.i) 
(3.ii) 
(3.iii)
(3.iv)

 
Memory complexity: 
d (storing q) 
Time complexity for (3.i)-(3.iv): 
s * a * d 

Fig. 3. Two algorithms for calculating x = A * v, when A is 
of the form A = XT * W * X + λ * I. 
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Note that when X is sparse most of the terms above will be 
0. Even with a sparse implementation of X, we will have to 
traverse through all positions where either Xq,i or Xq,j are 
nonzero. It’s enough for only one of the terms to be zero in 
order for the entire expression Xk,j* Xk,i to become zero. 

The solution to this is to create d sets of tuples defined as 
{ }jijiXXjiS iqjqq ≤∀∀=== ,,,1^1:),( ,, . 

For easier notation, we will refer to the set of these sets as S 
in this paper. 

{ }dqSS q ≤≤= 1:  
To calculate A, we use the algorithm in Fig. 4. 
The time complexity to calculate A will be in the order of 

the total number of elements we have in the S sets. We will 
have one element for every i and j such that Xq,i = 1 and Xq,j = 
1. The proof that gives the size complexity of set S will be 
significantly reduced if we assume that the ones in the X 
matrix is distributed so that each row of the matrix X has 
equally many ones. With our notation this means that each 
row of X contains k = s * a nonzero elements. The probability 
that Xq,i is 1 is 

a
k . 

The probability that both Xq,i is 1 and Xq,j is 1 when i ≠ j is 

1
1

−
−∗

a
k

a
k

. 

Vector X(i) consist of d elements, so the expected number of 
nonzero terms we will sum up when calculating <X(i),X(j)> is 

1
1

−
−∗∗

a
k

a
kd . 

To calculate 
XX T ∗  

we have to calculate <X(i),X(j)> for 

2
)1( −∗ aa  

different combinations of i and j where i < j. So in total this 
gives 

2
)1(

1
1 −∗∗

−
−∗∗ aa

a
k

a
kd  

elements in the S sets. 
Using worst case notation, we can rewrite this as 

)( kkdO ∗∗ , 
significantly better than 

)( akdO ∗∗ , 
especially for large data sets where the number of attributes is 
very large.  

To summarize the LR-Set algorithm, we are using the fact 
that calculating 

XX T ∗  
requires a large number of multiplications with 0. With this 
proposal we will instead pre-calculate the set S = {S1, …, Sd} 
such that each element in set Sq corresponds to a vector pair 
X(i) and X(j) where both element Xq,i and Xq,j are ones. 

 

V. SUMMARY OF TIME ANALYSIS 

Table II summarizes the theoretical time complexities for 
the IRLS algorithm when using the different algorithms. 

To build a multi-class classifier with c classes requires step 
(1.a) to (1.f) to be calculated c times. The overall time 
complexity for training the entire classifier is summarized in 
Table III.  

Input: 
Matrix X. 

Output: 
Set S = {S1, …, Sd} 

 
Sq = Empty set, for all q. 
FOR i = 1 TO d 
  FOR j = i TO d 
    FOREACH q WHERE 
           (Xq,i = 1 OR Xq,j = 1) 
      IF (Xq,i = 1 AND  Xq,j = 1) 
        Sq = Sq UNION {(i,j)} 
      END 
    END 
  END 
END 

Fig. 5. Algorithm to calculate set S. 

Input: 
Diagonal matrix W. Set S = {S1, …, Sd}. 
Scalar constant λ. 

Output: 
Symmetric A 

 
A’i,j = 0, for all i and j. 
FOR q = 1 TO d 
  FOREACH (i,j) IN Sq 
    A’i,j = A’i,j + Wq,q 
    A’j,i = A’j,i + Wq,q 
  END 
END  
 
DEFINE A S.T. 
Ai,j = A’i,j + λ, if i=j 
Ai,j = A’i,j,     if i≠j 
 

Fig. 4. Algorithm to calculate A using set S. 
The usage of A’ and A helps us to create A without 

explicitly adding λ to all diagonal elements Ai,i. 
This lowers the time complexity from O(d*k*k + a) 

to O(d*k*k). 



VI. RESULTS 

A. Datasets 
The datasets we have used are comprised of real world data 

from our log files at Microsoft. Every line in the data set 
corresponds to one “click” on one document on the search 
result page when a user has searched for help documents using 
the online help search system. The data comes from users 
searching for help documents using, for example, Microsoft 
Word.  

Fig. 6 shows a small sample from our database. 
Each attribute corresponds to a particular keyword and is 1 

if the keyword was used, otherwise it is 0. Each class 
corresponds to one help document. 

The main purpose of our experimental results is to show 
how our algorithms will perform on data sets of different 
sizes. To be able to obtain datasets with different number of 
attributes and classes we have filtered out keywords that have 
not been used frequently. We have also used filters to remove 
documents that have not obtained many clicks. Using different 
filters we have created 4 data sets with different properties. 
The properties of the data sets that we have used to run our 
algorithms on are presented in Table IV.  

The fill is the number of nonzero elements in matrix X 
divided with the total number of elements in X.  
 

B. Experimental results 
Tables V to VIII summarize the average runtime to execute 

the IRLS algorithm for each class. For LR-Set, we also need to 
calculate the S sets. We have presented the time it took to 
calculate these sets. Note that we only need to calculate the S 
sets once regardless of how many classes we have. So for 
datasets with a large number of classes, we mainly care about 
the runtime for the IRLS algorithm. The time to compute S is 
negligible. 

Fig. 7 summarizes our results in a diagram. 

We can see that the base algorithm, which is the 
implementation of the logistic regression IRLS algorithm 
without any optimization, is much worse than both of the other 
algorithms that we are proposing. For our four data sets, it’s 
up to 353.1 times slower (dataset 2) than LR-Set (347.5 times 
slower if we also account for the time it takes to compute the S 
sets), and the difference will continue to grow with larger data 
sets. 

We can also see that LR-Set which pre-computes the S sets 
outperforms the other two algorithms in terms of speed for all 
data sets we used. The memory requirement is, however, 
somewhat higher due to the fact that we store the S sets in 
main memory.  

To perform our experiments, we have used a PC with 2 GB 
RAM memory and with an AMD Athlon 64 bits “X2 Dual 
Core 4200+” 997 MHz processor. 

TABLE II 
TIME COMPLEXITY FOR IRLS ALGORITHM 

 Base LR-Sparse LR-Set 
Calculate S sets - - d*k*a 
(1.a) µi = 1 / (1 + exp(-X(i) * b)) d*k d*k d*k 
(1.b) Wi,i = µi * (1 - µi) d d d 
(1.c) Ui = Xi,. * b + (yi - µi) / Wi,i d*k d*k d*k 
(1.d) A = XT * W * X + λ * I d*k*a - d*k*k 
(1.e) b = XT * W * U d*k d*k d*k 
(1.f) Solve b from A * b = b imax*a2 imax*d*k imax*a2 

 
TABLE III 

TOTAL TIME COMPLEXITY TO BUILD A MULTI-CLASS CLASSIFIER 

 Time 
Base algorithm c*imax*a2 + c*d*k*a 
LR-Sparse c*imax*d*k 
LR-Set c*imax*a2 + c*d*k*k + d*k*a 

TABLE IV 
DATA SET PROPERTIES 

 Classes Attributes Data points Fill 
Dataset 1 3840 40689 1485768 0.0000577 
Dataset 2 11386 46053 1773012 0.0000513 
Dataset 3 3877 2685 1312959 0.000845 
Dataset 4 3835 12834 185721 0.000184 

 
TABLE V 

RESULTS FOR DATASET 1 
 Base Alg. LR-Sparse LR-Set 
Runtime IRLS algorithm 1448.64 s 56.44 s 4.48 s 
Compute S sets - - 773.69 s 
Virtual memory usage 138 MB 141 MB 166 MB 
 

TABLE VI 
RESULTS FOR DATASET 2 

 Base Alg. LR-Sparse LR-Set 
Runtime IRLS algorithm 1903.40 s 65.50 s 5.39 s 
Compute S sets - - 1001.11 s 
Virtual memory usage 146 MB 150 MB 177 MB 
 

TABLE VII 
RESULTS FOR DATASET 3 

 Base Alg. LR-Sparse LR-Set 
Runtime IRLS algorithm 159.90 s 45.77 s 3.74 s 
Compute S sets - - 225.07 s 
Virtual memory usage 125 MB 130 MB 147 MB 
 

TABLE VIII 
RESULTS FOR DATASET 4 

 Base Alg. LR-Sparse LR-Set 
Runtime IRLS algorithm 82.32 s 5.42 s 0.58 s 
Compute S sets - - 78.33 s 
Virtual memory usage 73 MB 101 MB 104 MB 
 
 
 
DOCUMENT CLICKED KEYWORDS USED 
HP030561211033  formula errors 
TC063692681033  resumes 
TC063692681033  cover letter 
HP051896701033  change font color in text box  

Fig. 6. Small sample from our web logs. 
 



VII. RELATED WORK 
There also exist other approaches to train logistic regression 

classifiers for large data sets using somewhat different 
techniques ([7], [15], [21], and [6]). The IRLS algorithm in 
combination with the CG method has shown to perform well 
([8]). Ref. [9] uses an IRLS/CG implementation without 
calculating the covariance matrix, but does not elaborate 
further with how they have implemented their algorithm. 

Readers who are not familiar with logistic regression 
classifiers are encouraged to read one of the many publications 
that have previously compared the accuracy of logistic 
regression classifiers to other classifiers. To reference a few of 
these: 

Ref. [13] compared 33 different classifiers and found that 
logistic regression came second with respect to their accuracy 
criteria. 

Ref. [18] used large data sets to compare a naïve Bayesian 
classifier with a logistic regression classifier and found that 
the classifier based on logistic regression outperformed the 
naïve Bayesian classifier on a large number of data sets.  

Ref. [17] performed an extensive analysis of how the 
accuracy of logistic regression classifiers compares to tree 
induction classifiers for data sets with different sizes. They 
found that logistic regression outperforms the tree induction 
methods for the smaller data sets, but as the data sets grew tree 
induction outperforms logistic regression. 

Ref. [2] compared logistic regression to several adaptive 
nonlinear learning methods and concluded that none of the 
methods could outperform logistic regression, though they 
note this might not be true in cases with high signal-to-noise 
ratios. 

The author would also like to acknowledge a few other 
publications on the same topic: [3], [20], [9], [10], [11], [16], 
[4] and [12] have all successfully built classifiers using 
logistic regression techniques with good results. 
 

VIII. CONCLUSIONS 
In this paper, we have introduced two new algorithms for 

training very large scale logistic regression classifiers. Our 
algorithms are solving the exact same mathematical problem, 
so their final results are identical. 

We have shown the theoretical time complexity for these 
algorithms, but also shown the run time and the virtual 
memory usage when we run the algorithms on real world data 
sets with a variety of sizes. 

LR-Set was constantly outperforming both the other 
algorithms and is a clear winner on our data sets. However, 
one should remember that although our experiments 
constantly favored LR-Set, we should note that LR-Sparse has 
a significantly different time complexity expression and we 
claim that it is very likely that data sets with very different 
sizes and properties could be favored by LR-Sparse. So our 
results should not be interpreted that LR-Set is necessarily 
better than LR-Sparse for all possible data sets. The LR-Set 
algorithm also has an overhead cost since it needs to compute 
the S sets. If our data set consists of very few classes, LR-
Sparse might be preferred over LR-Set. 

Logistic regression has never obtained full acceptance in the 
data mining community as a standard machine learning 
technique for large data sets, largely due to the general belief 
that logistic regression is too computationally expensive and 
that it will not scale up. We have in this paper introduced 
algorithms that are much more efficient than the algorithms 
that have previously been presented in the literature. 
Classifiers that previously would have taken months to build 
can now be implemented more efficiently and be built in just a 
few hours. 

 

Fig. 7. Summary of results. 
This diagram shows how the training time is significantly 

reduced using the algorithms we have proposed. The 
training time was up to 353 times faster when data from 

our web logs were used. 
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