
Algorithms for Fast Large Scale Data Mining
Using Logistic Regression

Omid Rouhani-Kalleh

One Microsoft Way
Redmond, WA 98052 USA
Phone: +1 425-704-7383

Abstract-This paper proposes two new efficient algorithms
to train logistic regression classifiers using very large data
sets. Our algorithms will lower the upper bound time
complexity that the existing algorithm in the literature has
and our experiments confirm that our proposed
algorithms significantly improve the execution time. For
our data sets, which come from Microsoft’s web logs, the
execution time was reduced up to 353 times as compared
to the algorithm often referenced in the literature. The
improvement will be even greater for larger data sets.
*

I. INTRODUCTION

A. Motivation
The motivation for our research lies in the large number of

recent publications showing great success in using logistic
regression as a pure data mining tool to do classification ([20],
[13], [18], [2] and [9]). Techniques have previously been
presented for how to scale up logistic regression to deal with
large sparse data sets ([16]). A popular approach to do this is
to use the iteratively reweighted least squares method (IRLS
from [5]) together with a conjugate gradient equation solver
([1]) to build large scale binary logistic regression classifiers
([9]). This method is appropriate for data sets with a very large
number of data points and attributes when the attributes are
binary and the data is sparse ([10]).

B. Our contribution
We will propose two efficient algorithms to implement the

existing logistic regression algorithm for classification. Our
first proposal, named LR-Sparse, will avoid the creation of
matrix A and reduce the memory usage and improve the run
time. The second proposal, named LR-Set, takes advantage of
that matrix A is repeatedly recalculated using this equation

IXWXA T ∗+∗∗= λ .
LR-Set will use the fact that X and λ are constant

throughout the calculations and only W changes. Knowing this
allows us to recalculate A much faster than simply performing
the multiplications in the equation. This results in a much
lower training time when we have a large number of classes.

Per design these two algorithms will generate identical
classifiers as the existing algorithm.

Research conducted by Omid Rouhani-Kalleh for Microsoft Corporation,
Redmond WA 98052, USA. http://www.microsoft.com/

II. LOGISTIC REGRESSION

A. Multi-class classification
Although we are dealing with large scale multi-class

prediction, the reader should note that one of the assumptions
made when using logistic regression is that the data comes
from a binomial distribution and hence it is a binary classifier.
The most common approach to extend a binary classifier such
as logistic regression to serve as a multi-class classifier for N
classes is to build N separate binary classifiers, each being
able to give a score for how likely it is that a data point comes
from the corresponding class. To do prediction, we let all N
classifiers score the data point, and the highest score
corresponds to the class in which we have the highest belief.
Since we need to train one classifier per class in our data set,
the time complexity of the training phase and the memory
requirement for storing the classifier is linearly proportional to
the number of classes in the data set.

B. Notations
Since we will use many mathematical expressions in this

paper we find it necessary to define the notation we intend to
use in order to avoid confusion. Hereafter, we will strictly
enforce the following notation:

Element i in a vector v is denoted vi. Row j in matrix X is
denoted X[j]. Column i in matrix X is denoted X(i). Element
(i,j) in matrix X is denoted Xi,j. Vectors might have
superscripts, so v(i) and v(j) are two different vectors. The k:th
element in v(i) is vk

(i). The dot product between vector v and
vector u is denoted <v,u> and is defined as

>< vu , ∑ ∗=
i

ii vu .

Matrix X is our input data set and each row in this matrix
corresponds to one data point. Yi is the class that data point i
corresponds to. We have c different classes, so

{ }cYi ,...,1∈ .
Since we will have to build c different classifiers, we define:

when mYi = , { }cm ,...,1∈

=

,0
,1)(m

iy
otherwise

y(m) is the binary vector that will be used to build the m:th
classifier, and each 1 corresponds to a positive data point and
each 0 corresponds to a negative data point.

Matrix X is a binary matrix where each attribute is either 1
or 0. We will deal with very large data sets and X will be
sparse.

C. Iteratively Reweighted Least-Square method
One of the most popular algorithms to build logistic

regression (LR) classifiers is the Iteratively Reweighted Least-
Squares (IRLS) method. It’s a robust ([5]) and fast ([10])
method to build LR classifiers.

The IRLS algorithm is shown in Fig. 1. The derivation of
this algorithm is beyond the scope of this paper. The curious
reader is encouraged to read [18], [8] or [14] for a complete
theoretical background to the equations.

In a multi-class scenario where our data points can belong to
three or more classes (c > 2), we will execute the IRLS
algorithm once for each class.

Although the algorithm might look straightforward to
implement, one can implement it in several different ways. In
this paper we will first look at the time complexity to solve the
equations in Fig. 1 and Fig. 2 with a straight forward
approach. We will then show that our algorithms, LR-Sparse
and LR-Set, will use certain properties of the problem to solve
these equations using a different approach with significantly
lower time complexity.

It is important to understand that our proposed algorithms
will solve the exact same mathematical problem, so the final
classifiers will be identical, but due to the differences in the
three algorithms we will end up with both different theoretical
time complexities and different real time execution time when
performing our experiments using real world data sets.

The two most computationally expensive lines in the IRLS
algorithm are (1.d) and (1.f). Our algorithms will take on

different approaches to solve these two equations.
In all three cases we will solve (1.f) using the Conjugate

Gradient (CG) method ([19]), which is a method from the field
of numerical mathematics which has been studied for many
years and has proven to be a fast and robust solver of linear
equation systems ([1]). The CG algorithm will find a solution
to the equation system

bxA =∗
when A is a large sparse symmetric positive definite matrix
(SPD). The algorithm is presented in Fig. 2.

III. TIME COMPLEXITY ANALYSIS

A. Notation
As we introduce our algorithms and analyze the time

complexity for them we will use the notation in Table I.

Input:
Symmetric Positive Definite matrix A, vector b,
maximum number of iterations imax and a starting
value x.

Output:
x such that A * x = b.

0=i

xAbr *−= (2.a)

new

T
new rr

rd

δδ
δ

=
=

=

0

WHILE(newδ is large enough AND

 maxii <)

dAq *= (2.b)

1
*

*
*

+=
+=

=

=

=
−=
+=

=

ii
drd

rr

qrr
dxx

qd

old

new

T
new

newold

T
new

β
δ
δβ

δ
δδ

α
α

δα

END
Fig. 2. The Conjugate Gradient method.

Input:
Matrix X, vector y = y(m) (corresponding to class m)
and ridge regression scalar parameter λ.

Output:
Logistic Regression weights b = b (m) (corresponding to
class m).

0=β

WHILE(termination criteria is not met)

β*][1
1

iXi e
u −+

= (1.a)

)1(*, iiiiW µµ −= (1.b)

ii

ii
ii W

yXU
,

)(* µβ −+= (1.c)

IXWXA T *** λ+= (1.d)
UWXb T **= (1.e)

Solve β from bA =β* (1.f)
END

Fig. 1. The Iteratively Reweighted Least Squares
(IRLS) method.

TABLE I

TIME COMPLEXITY NOTATION
Variable Denotes

a Number of attributes (columns in X)
d Number of data points (rows in X)
s Number of nonzero elements in matrix X divided with total

number of elements in X
c Number of classes

imax Maximum number of iterations for the CG method
k Average number of nonzero elements per row in X

(k = s * a)

Note that k is a short form for s*a. This notation has been

introduced to avoid the usage of the more abstract term s in
our final time complexity equations. In most applications
one can easily put an upper bound to k by fixing how many
attributes for each data point can be set to ones.

Our data comes from our search engine. Like most search
boxes we have an upper limit to how many words one can
type in the search box. This has indirectly served as an
upper bound to k for us.

B. Time complexity for the Conjugate Gradient
algorithm

It’s not entirely straightforward to find the time complexity
for the CG algorithm. Ref. [19] showed how the time
complexity of the algorithm is

()KmO ∗ ,
where K is the condition number for matrix A defined as

min

max

λ
λ=K

and m is the number of nonzero elements in matrix A. λmax and
λmin are the largest and smallest eigenvalues of A in absolute
values.

In practice, however, one will put a limit on how many
iterations the algorithm will do before termination in order to
obtain an approximate solution. We call this limit imax and will
then have time complexity

()maximO ∗

for the entire algorithm.
Now let’s rewrite this complexity with the notation

introduced earlier. The A matrix will be of size a2. The
number of nonzero elements in the A matrix is strictly
bounded by the size of A and hence

()max
2 iaO ∗

serves as an upper bound for our time complexity analysis.
The stringent reader might wonder if it is possible to express

the estimated number of nonzero elements in A as an
expression smaller than a2 using the knowledge that X is
sparse.

It is possible to show that the estimated number of nonzero
elements in A is

−
−−∗−−∗

d

a
ka

a
kaa

1
112

if the nonzero elements are evenly distributed among the rows
of the X matrix. Although this expression constantly is less
than a2, for large d the expression quickly approaches a2.

IV. ALGORITHMS

A. Base algorithm
The first algorithm we will look at is the direct

implementation of the IRLS and CG algorithms as they are
given in the literature ([9], [18] and the algorithms in this
paper). The CG algorithm, for example, will have time
complexity

()max
2 iaO ∗

as discussed previously and as referenced in other literature.
Although most of the equations in the IRLS and the CG

algorithms can efficiently be implemented using
straightforward implementations, the time complexity for (1.d)
is not straightforward. The first thing one need to observe is
that W is a diagonal matrix ([8]). We will show that the time
complexity to calculate

XXA T ∗=
is identical to calculating

IXWXA T ∗+∗∗= λ .
In general, for a diagonal matrix W with diagonal elements

iii wW =,
we can define matrix C such that

jiiji BwC ,, ∗= .
We now have that

CABWA ∗=∗∗ .
In order to calculate

BWA ∗∗ ,
we only need to calculate

CA ∗ .
The dimension of matrix C is identical to matrix B, and if wi,i
≠ 0, the matrices will also have identical sparseness factors
and hence the time complexity to solve either equation is
identical.
Since λ is a scalar, we can implement the λ * I term as an

)1(O

operation and it will not change our total time complexity.
So to summarize, from a time complexity perspective, solving

IXWXA T ∗+∗∗= λ
is identical to solving

XXA T ∗= .
To calculate

XXA T ∗=
we will use the fact that X is sparse and that A will be
symmetric.

That X is sparse with a sparse factor s allows us to calculate
<X(i),X(j)> by only traveling through the nonzero elements in
X(i) and X(j). If we fix i and analyze the complexity of

calculating <X(i),X(j)> for all possible j, this will be in order of
number of nonzero elements we have in X, which is

)(dasO ∗∗ .
Now we need to repeat this for all values of i. We have a
different values of i and hence our total time complexity is

)(2 dasO ∗∗ ,
which can be rewritten as

)(dakO ∗∗ .
In practice, we use the fact that <X(i),X(j)> equals <X(j),X(i)>

in order to halve our computations. The time complexity
however remains the same.

B. LR-Sparse: Do not explicitly calculate matrix A
Our first proposal for a new algorithm will be using the fact

that we do not have to calculate the A matrix at all at step
(1.d). We only need the A matrix to multiply it with a vector v
at (2.a) and (2.b).

Fig. 3. shows how there are two different ways of
calculating

vAx ∗=
when A is defined as

IXWXA T ∗+∗∗= λ .
Equation (3.ii) and (3.iv) in Fig. 3 are both

()dO
operations, while (3.i) and (3.iii) will have to go through each
element in X, and hence will require

()dasO ∗∗ .
The total time complexity for this new operation is

()dasO ∗∗ .
Substituting s and a with k we have

()dkO ∗ ,
which is equal to the number of nonzero elements in matrix X.
The time complexity of solving (3.a) is in proportion to the
number of nonzero elements we have in the A matrix, which is
bounded by

()2aO .
In practice, A is often sparse. However, as our input dataset

X grows (d gets larger), the density of A will increase.
Notice how we at this point only analyzed the time

complexity for the multiplication

vAx ∗=
without accounting for the time it takes to calculate A. The
time complexity to actually create A depends on what
algorithm we use to calculate it. We have already done this
analysis for the base algorithm. Our next proposal, LR-Set,
will improve this time complexity.

To summarize the LR-Sparse algorithm, its main advantage
is that we do not have to calculate and store the A matrix in
main memory, which requires

()2aO

space. However, instead we will have to store an additional
vector requiring

()dO

space. This may or may not be worse, depending on the
properties of the input data set X. The time complexity of the

vAx ∗=
operation goes from being

()2aO

to
()dkO ∗ ,

making the run time of the operation invariant to the number
of attributes we have in our initial data set X. If this is
desirable or not depends on the sparseness and the dimensions
of X (the values for s, d and a).

C. LR-Set: Explicitly calculate matrix A, using sets
Our second proposal is similar to the base algorithm in that

we again will calculate A, but now we will use the form of
equation (1.d) to obtain an even better time complexity. (1.d)
will be replaced so instead of actually calculating

IXWXA T ∗+∗∗= λ
we will introduce a new data structure that allows us to
compute A in

)(dkkO ∗∗

time, instead of
)(dakO ∗∗

which the base algorithm offers.
As before the λ * I does not affect the total time complexity,

so we will focus on how to calculate
XWXA T ∗∗= .

We have just seen that the fastest way to calculate this
equation for a sparse matrix X and diagonal matrix W is

()dakO ∗∗ .
However, if we are going to perform the multiplication many
times, and X is constant and only W changes, we can pre-
calculate how the final matrix A will look like and use this to
quickly recalculate A for each new W.

We previously discussed that when we calculate the dot
product <X(i),X(j)> we will have to traverse all nonzero
elements in X(i) and X(j). However, most of this traversal is
unnecessary since most of the multiplications will be with 0.

The formula to calculate A can be written as:

Input: X, W, λ
Output: x
A = XT * W * X + λ * I
x = A * v (3.a)

Memory complexity:
a2 (storing A)
Time complexity for (3.a):
a2

Input: X, W, λ
Output: x
q = X * v
q = W * q
q = XT * q
x = q + λ * v

(3.i)
(3.ii)
(3.iii)
(3.iv)

Memory complexity:
d (storing q)
Time complexity for (3.i)-(3.iv):
s * a * d

Fig. 3. Two algorithms for calculating x = A * v, when A is
of the form A = XT * W * X + λ * I.

∑
=

=
d

q
qqiqjqji WXXA

1
,,,, ** .

Note that when X is sparse most of the terms above will be
0. Even with a sparse implementation of X, we will have to
traverse through all positions where either Xq,i or Xq,j are
nonzero. It’s enough for only one of the terms to be zero in
order for the entire expression Xk,j* Xk,i to become zero.

The solution to this is to create d sets of tuples defined as
{ }jijiXXjiS iqjqq ≤∀∀=== ,,,1^1:),(,, .

For easier notation, we will refer to the set of these sets as S
in this paper.

{ }dqSS q ≤≤= 1:
To calculate A, we use the algorithm in Fig. 4.
The time complexity to calculate A will be in the order of

the total number of elements we have in the S sets. We will
have one element for every i and j such that Xq,i = 1 and Xq,j =
1. The proof that gives the size complexity of set S will be
significantly reduced if we assume that the ones in the X
matrix is distributed so that each row of the matrix X has
equally many ones. With our notation this means that each
row of X contains k = s * a nonzero elements. The probability
that Xq,i is 1 is

a
k .

The probability that both Xq,i is 1 and Xq,j is 1 when i ≠ j is

1
1

−
−∗

a
k

a
k

.

Vector X(i) consist of d elements, so the expected number of
nonzero terms we will sum up when calculating <X(i),X(j)> is

1
1

−
−∗∗

a
k

a
kd .

To calculate
XX T ∗

we have to calculate <X(i),X(j)> for

2
)1(−∗ aa

different combinations of i and j where i < j. So in total this
gives

2
)1(

1
1 −∗∗

−
−∗∗ aa

a
k

a
kd

elements in the S sets.
Using worst case notation, we can rewrite this as

)(kkdO ∗∗ ,
significantly better than

)(akdO ∗∗ ,
especially for large data sets where the number of attributes is
very large.

To summarize the LR-Set algorithm, we are using the fact
that calculating

XX T ∗
requires a large number of multiplications with 0. With this
proposal we will instead pre-calculate the set S = {S1, …, Sd}
such that each element in set Sq corresponds to a vector pair
X(i) and X(j) where both element Xq,i and Xq,j are ones.

V. SUMMARY OF TIME ANALYSIS

Table II summarizes the theoretical time complexities for
the IRLS algorithm when using the different algorithms.

To build a multi-class classifier with c classes requires step
(1.a) to (1.f) to be calculated c times. The overall time
complexity for training the entire classifier is summarized in
Table III.

Input:
Matrix X.

Output:
Set S = {S1, …, Sd}

Sq = Empty set, for all q.
FOR i = 1 TO d
 FOR j = i TO d
 FOREACH q WHERE
 (Xq,i = 1 OR Xq,j = 1)
 IF (Xq,i = 1 AND Xq,j = 1)
 Sq = Sq UNION {(i,j)}
 END
 END
 END
END

Fig. 5. Algorithm to calculate set S.

Input:
Diagonal matrix W. Set S = {S1, …, Sd}.
Scalar constant λ.

Output:
Symmetric A

A’i,j = 0, for all i and j.
FOR q = 1 TO d
 FOREACH (i,j) IN Sq
 A’i,j = A’i,j + Wq,q
 A’j,i = A’j,i + Wq,q
 END
END

DEFINE A S.T.
Ai,j = A’i,j + λ, if i=j
Ai,j = A’i,j, if i≠j

Fig. 4. Algorithm to calculate A using set S.
The usage of A’ and A helps us to create A without

explicitly adding λ to all diagonal elements Ai,i.
This lowers the time complexity from O(d*k*k + a)

to O(d*k*k).

VI. RESULTS

A. Datasets
The datasets we have used are comprised of real world data

from our log files at Microsoft. Every line in the data set
corresponds to one “click” on one document on the search
result page when a user has searched for help documents using
the online help search system. The data comes from users
searching for help documents using, for example, Microsoft
Word.

Fig. 6 shows a small sample from our database.
Each attribute corresponds to a particular keyword and is 1

if the keyword was used, otherwise it is 0. Each class
corresponds to one help document.

The main purpose of our experimental results is to show
how our algorithms will perform on data sets of different
sizes. To be able to obtain datasets with different number of
attributes and classes we have filtered out keywords that have
not been used frequently. We have also used filters to remove
documents that have not obtained many clicks. Using different
filters we have created 4 data sets with different properties.
The properties of the data sets that we have used to run our
algorithms on are presented in Table IV.

The fill is the number of nonzero elements in matrix X
divided with the total number of elements in X.

B. Experimental results
Tables V to VIII summarize the average runtime to execute

the IRLS algorithm for each class. For LR-Set, we also need to
calculate the S sets. We have presented the time it took to
calculate these sets. Note that we only need to calculate the S
sets once regardless of how many classes we have. So for
datasets with a large number of classes, we mainly care about
the runtime for the IRLS algorithm. The time to compute S is
negligible.

Fig. 7 summarizes our results in a diagram.

We can see that the base algorithm, which is the
implementation of the logistic regression IRLS algorithm
without any optimization, is much worse than both of the other
algorithms that we are proposing. For our four data sets, it’s
up to 353.1 times slower (dataset 2) than LR-Set (347.5 times
slower if we also account for the time it takes to compute the S
sets), and the difference will continue to grow with larger data
sets.

We can also see that LR-Set which pre-computes the S sets
outperforms the other two algorithms in terms of speed for all
data sets we used. The memory requirement is, however,
somewhat higher due to the fact that we store the S sets in
main memory.

To perform our experiments, we have used a PC with 2 GB
RAM memory and with an AMD Athlon 64 bits “X2 Dual
Core 4200+” 997 MHz processor.

TABLE II
TIME COMPLEXITY FOR IRLS ALGORITHM

 Base LR-Sparse LR-Set
Calculate S sets - - d*k*a
(1.a) µi = 1 / (1 + exp(-X(i) * b)) d*k d*k d*k
(1.b) Wi,i = µi * (1 - µi) d d d
(1.c) Ui = Xi,. * b + (yi - µi) / Wi,i d*k d*k d*k
(1.d) A = XT * W * X + λ * I d*k*a - d*k*k
(1.e) b = XT * W * U d*k d*k d*k
(1.f) Solve b from A * b = b imax*a2 imax*d*k imax*a2

TABLE III

TOTAL TIME COMPLEXITY TO BUILD A MULTI-CLASS CLASSIFIER

 Time
Base algorithm c*imax*a2 + c*d*k*a
LR-Sparse c*imax*d*k
LR-Set c*imax*a2 + c*d*k*k + d*k*a

TABLE IV
DATA SET PROPERTIES

 Classes Attributes Data points Fill
Dataset 1 3840 40689 1485768 0.0000577
Dataset 2 11386 46053 1773012 0.0000513
Dataset 3 3877 2685 1312959 0.000845
Dataset 4 3835 12834 185721 0.000184

TABLE V

RESULTS FOR DATASET 1
 Base Alg. LR-Sparse LR-Set
Runtime IRLS algorithm 1448.64 s 56.44 s 4.48 s
Compute S sets - - 773.69 s
Virtual memory usage 138 MB 141 MB 166 MB

TABLE VI
RESULTS FOR DATASET 2

 Base Alg. LR-Sparse LR-Set
Runtime IRLS algorithm 1903.40 s 65.50 s 5.39 s
Compute S sets - - 1001.11 s
Virtual memory usage 146 MB 150 MB 177 MB

TABLE VII
RESULTS FOR DATASET 3

 Base Alg. LR-Sparse LR-Set
Runtime IRLS algorithm 159.90 s 45.77 s 3.74 s
Compute S sets - - 225.07 s
Virtual memory usage 125 MB 130 MB 147 MB

TABLE VIII
RESULTS FOR DATASET 4

 Base Alg. LR-Sparse LR-Set
Runtime IRLS algorithm 82.32 s 5.42 s 0.58 s
Compute S sets - - 78.33 s
Virtual memory usage 73 MB 101 MB 104 MB

DOCUMENT CLICKED KEYWORDS USED
HP030561211033 formula errors
TC063692681033 resumes
TC063692681033 cover letter
HP051896701033 change font color in text box

Fig. 6. Small sample from our web logs.

VII. RELATED WORK
There also exist other approaches to train logistic regression

classifiers for large data sets using somewhat different
techniques ([7], [15], [21], and [6]). The IRLS algorithm in
combination with the CG method has shown to perform well
([8]). Ref. [9] uses an IRLS/CG implementation without
calculating the covariance matrix, but does not elaborate
further with how they have implemented their algorithm.

Readers who are not familiar with logistic regression
classifiers are encouraged to read one of the many publications
that have previously compared the accuracy of logistic
regression classifiers to other classifiers. To reference a few of
these:

Ref. [13] compared 33 different classifiers and found that
logistic regression came second with respect to their accuracy
criteria.

Ref. [18] used large data sets to compare a naïve Bayesian
classifier with a logistic regression classifier and found that
the classifier based on logistic regression outperformed the
naïve Bayesian classifier on a large number of data sets.

Ref. [17] performed an extensive analysis of how the
accuracy of logistic regression classifiers compares to tree
induction classifiers for data sets with different sizes. They
found that logistic regression outperforms the tree induction
methods for the smaller data sets, but as the data sets grew tree
induction outperforms logistic regression.

Ref. [2] compared logistic regression to several adaptive
nonlinear learning methods and concluded that none of the
methods could outperform logistic regression, though they
note this might not be true in cases with high signal-to-noise
ratios.

The author would also like to acknowledge a few other
publications on the same topic: [3], [20], [9], [10], [11], [16],
[4] and [12] have all successfully built classifiers using
logistic regression techniques with good results.

VIII. CONCLUSIONS
In this paper, we have introduced two new algorithms for

training very large scale logistic regression classifiers. Our
algorithms are solving the exact same mathematical problem,
so their final results are identical.

We have shown the theoretical time complexity for these
algorithms, but also shown the run time and the virtual
memory usage when we run the algorithms on real world data
sets with a variety of sizes.

LR-Set was constantly outperforming both the other
algorithms and is a clear winner on our data sets. However,
one should remember that although our experiments
constantly favored LR-Set, we should note that LR-Sparse has
a significantly different time complexity expression and we
claim that it is very likely that data sets with very different
sizes and properties could be favored by LR-Sparse. So our
results should not be interpreted that LR-Set is necessarily
better than LR-Sparse for all possible data sets. The LR-Set
algorithm also has an overhead cost since it needs to compute
the S sets. If our data set consists of very few classes, LR-
Sparse might be preferred over LR-Set.

Logistic regression has never obtained full acceptance in the
data mining community as a standard machine learning
technique for large data sets, largely due to the general belief
that logistic regression is too computationally expensive and
that it will not scale up. We have in this paper introduced
algorithms that are much more efficient than the algorithms
that have previously been presented in the literature.
Classifiers that previously would have taken months to build
can now be implemented more efficiently and be built in just a
few hours.

Fig. 7. Summary of results.
This diagram shows how the training time is significantly

reduced using the algorithms we have proposed. The
training time was up to 353 times faster when data from

our web logs were used.

REFERENCES
[1] Barrett R., Berry M., Chan T F., Demmel J., Donato J M.,

J Dongarra, Eijkhout V., Pozo R., Romine C. and Van der
Vorst H.. (1994). Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Netlib
Repository.

[2] Ennis, M., Hinton, G., Naylor, D., Revow, M., and
Tibshirani, R. (1998). A comparison of statistical learning
methods on the GUSTO database. Statist. Med. 17:2501–
2508.

[3] Genik, A., Lewis, D. and Madigan, D. (2004). Large-Scale
Bayesian Logistic Regression for Text Categorization.
Journal of Machine Learning Research

[4] Gray A., Komarek P., Liu T. and Moore A. (2004). High-
Dimensional Probabilistic Classification for Drug Discover.

[5] Holland, P. W., and Welsch R. E. (1977). Robust
Regression Using Iteratively Reweighted Least-Squares.
Communications in Statistics: Theory and Methods, A6.

 [6] Jin, R., Yan, R., Zhang, R. and Hauptmann, A. (2003). A
faster iterative scaling algorithm for conditional exponential
model. In The 20th International Conference on Machine
Learning.

[7] Kivinen, J. and Warmuth, M. K. (2001). Relative Loss
Bounds for Multidimensional Regression Problems.
Machine Learning, 45, 301-329.

[8] Komarek, P. (2004). Logistic Regression for Data Mining
and High-Dimensional Classification. PhD Thesis. Carnegie
Mellon University.

[9] Komarek P. & Moore A. (2005). Making Logistic
Regression A Core Data Mining Tool: A Practical
Investigation of Accuracy, Speed, and Simplicity. ICDM.

[10] Komarek P. and Moore, A. (2003) Fast Robust Logistic
Regression for Large Sparse Datasets with Binary Outputs.
In Artificial Intelligence and Statistics.

[11] Komarek P. and Moore A. (2003). Fast Logistic
Regression for Data Mining, Text Classification and Link
Detection.

[12] Kubica J., Goldenberg A., Komarek P., Moore A., and
Schneider J. (2003). A Comparison of Statistical and
Machine Learning Algorithms on the Task of Link
Completion. In KDD Workshop on Link Analysis for
Detecting Complex Behavior.

[13] Lim, T., Loh, W., Shih, Y. (2000). A Comparison of
Prediction Accuracy, Complexity, and Training Time of
Thirty-three Old and New Classification Algorithms.
Machine Learning, 40, 203-229.

[14] Mitchell, Tom M.. (2005) Generative and discriminative
classifiers: Naive Bayes and logistic regression.

[15] Malouf, R. (2002), A Comparison of Algorithms for
Maximum Entropy Parameter Estimation. In Sixth Conf. on
Natural Language Learning, pages 49-55.

[16] Paciorek C. J. and Ryan L. (2005). Computational
techniques for spatial logistic regression with large datasets.

[17] Perlich, C., Provost, F., Simonoff, J. S. (2003). Tree
Induction vs. Logistic Regression: A Learning-Curve
Analysis. Journal of Machine Learning Research 4 211-255.

[18] Rouhani-Kalleh, O. (2006). Analysis, Theory and Design
of Logistic Regression Classifiers Used for Very Large Scale
Data Mining. Master Thesis. University of Illinois at
Chicago.

[19] Shewchuk J. R. (1994). An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain. Technical
Report CS-94-125, Carnegie Mellon University, Pittsburgh.

[20] Zhang J., Jin R., Yang Y., Hauptmann A. G. (2003)
Modified Logistic Regression: An Approximation to SVM
and Its Applications in Large-Scale Text Categorization.
ICML.

[21] Zhang, T. and Oles, F. (2001), Text Categorization Based
on Regularized Linear Classification Methods. Information
Retrieval, 4, 5-31.

